Geometry Final Exam

Multiple Choice
Identify the letter of the choice that best completes the statement or answers the question.

1. If $m\angle BOC = 27$ and $m\angle AOC = 47$, then what is the measure of $\angle AOB$? The diagram is not to scale.

 a. 74
 b. 40
 c. 20
 d. 54

2. M is the midpoint of CF for the points $C(3, 4)$ and $F(9, 8)$. Find MF.
 a. $\sqrt{13}$
 b. $2\sqrt{13}$
 c. 26
 d. 13

3. Find, to the nearest tenth, the area of the region that is inside the square and outside the circle. The circle has diameter 14 inches.
 a. 42.1 in.2
 b. 10.5 in.2
 c. 153.9 in.2
 d. 196 in.2

4. When a conditional and its converse are true, you can combine them as a true ___.
 a. counterexample
 b. biconditional
 c. unconditional
 d. hypothesis

5. If $\angle A$ and $\angle B$ are supplementary angles and $m\angle A = 4m\angle B$, find $m\angle A$ and $m\angle B$.
 a. 72, 18
 b. 144, 36
 c. 18, 72
 d. 36, 144

6. $\angle ABC \cong$ ___
7. What is the measure of a base angle of an isosceles triangle if the vertex angle measures 38° and the two congruent sides each measure 21 units?

- a. 71°
- b. 142°
- c. 152°
- d. 76°

8. Find the value of x. The diagram is not to scale.

- a. 32
- b. 50
- c. 64
- d. 80

9. What is the inverse of this statement?
 If he speaks Arabic, he can act as the interpreter.
 - a. If he does not speak Arabic, he can act as the interpreter.
 - b. If he speaks Arabic, he can’t act as the interpreter.
 - c. If he can act as the interpreter, then he does not speak Arabic.
 - d. If he does not speak Arabic, he can’t act as the interpreter.

Find the area. The figure is not drawn to scale.
10. \[
\text{area of trapezoid} = \frac{1}{2} \times (607.32 + 36.7) \times 19 \text{ in.}^2
\]
a. 607.32 in.\(^2\)
b. 36.7 in.\(^2\)
c. 303.66 in.\(^2\)
d. 77.2 in.\(^2\)

11. A kite has diagonals 9.2 ft and 8 ft. What is the area of the kite?
a. 36.8 ft\(^2\)
b. 8.6 ft\(^2\)
c. 73.6 ft\(^2\)
d. 34.4 ft\(^2\)

12. Name the major arc and find its measure.
a. arc \(ADB\); 50°
b. arc \(AB\); 50°
c. arc \(ADB\); 310°
d. arc \(AB\); 310°

13. A model is built having a scale of 1 : 100,000. How high would a 35,600-ft mountain be in the model? Give your answer to the nearest tenth of an inch.
a. 4.272 in.
b. 2.136 in.
c. 0.356 in.
d. 427,200 in.

14. Use the information in the diagram to determine the height of the tree to the nearest foot.
a. 80 ft
b. 264 ft
c. 60 ft
d. 72 ft

The figures are similar. The area of one figure is given. Find the area of the other figure to the nearest whole number.

15. The area of the smaller trapezoid is 558 m\(^2\).
Find the value of x. Round your answer to the nearest tenth.

16. \triangle Not drawn to scale

a. 3.3
b. 3.1
c. 24.7
d. 8.5

Find the value of x. Round to the nearest tenth.

17. \triangle Not drawn to scale

a. 12.5
b. 10
c. 13
d. 9.7

18. \triangle Not drawn to scale

a. 52.6
b. 52.9
c. 6.2
d. 6.5

Find the area of the triangle. Give the answer to the nearest tenth. The drawing may not be to scale.
19.
\[
\begin{array}{c}
4.7 \text{ m} \\
\angle 47^\circ \\
6.1 \text{ m}
\end{array}
\]
(a) 10.5 m²
(b) 9.8 m²
(c) 19.6 m²
(d) 21.0 m²

20. Use Euler’s Formula to find the missing number.
Vertices: 16
Edges: 37
Faces:
(a) 24
(b) 22
(c) 23
(d) 26

Find the volume of the square pyramid shown. Round to the nearest tenth as necessary.

21.
\[
\begin{array}{c}
10 \text{ cm} \\
12 \text{ cm} \\
12 \text{ cm}
\end{array}
\]
Not drawn to scale
(a) 40 cm³
(b) 480 cm³
(c) 147.3 cm³
(d) 720 cm³

22. Find the similarity ratio of a cube with volume 729 m³ to a cube with volume 3375 m³.
(a) 81 : 225
(b) 3 : 5
(c) 5 : 3
(d) 225 : 81

23. JK, KL, and LJ are all tangent to O (not drawn to scale). JA = 9, AL = 10, and CK = 14. Find the perimeter of ΔJKL.
Find the value of \(x \). If necessary, round your answer to the nearest tenth. The figure is not drawn to scale.

24. The figure consists of a chord, a secant and a tangent to the circle. Round to the nearest hundredth, if necessary.

\[
\begin{array}{c}
\text{a. } 15.75 \\
\text{b. } 9 \\
\text{c. } 5.14 \\
\text{d. } 28
\end{array}
\]

25. Find the diameter of the circle for \(BC = 16 \) and \(DC = 28 \). Round to the nearest tenth. (The diagram is not drawn to scale.)

\[
\begin{array}{c}
\text{a. } 33 \\
\text{b. } 49 \\
\text{c. } 14.3 \\
\text{d. } 65
\end{array}
\]

Short Answer

26. \(MO \) bisects \(\angle LMN \), \(m\angle LMO = 8x - 23 \), and \(m\angle NMO = 2x + 37 \). Solve for \(x \) and find \(m\angle LMN \). The diagram is not to scale.
Find the volume of the cone shown as a decimal rounded to the nearest tenth.

27.

22 m

Not drawn to scale

28. A jewelry store buys small boxes in which to wrap items that they sell. The diagram below shows one of the boxes. Find the lateral area and the surface area of the box to the nearest whole number.

Not drawn to scale

Solve for \(a\) and \(b\).

29.

8

10

6

3

\(a\)

\(b\)

30. The widths of two similar rectangles are 16 cm and 14 cm. What is the ratio of the perimeters? Of the areas?

31. Find the value of \(x\) and \(y\) rounded to the nearest tenth.
32. Find the value of x.

33. Find the value of x to the nearest degree.

34. Find the values of x and y. The diagram is not to scale.

Find the area. The figure is not drawn to scale.
35.
MULTIPLE CHOICE

1. **ANS:** C **DIF:** L1 **REF:** 1-4 Measuring Segments and Angles
 OBJ: 1-4.2 Finding Angle Measures
 STO: IN G.1.1
 TOP: 1-4 Example 6
 KEY: Angle Addition Postulate
 MSC: NAEP M1e, NAEP M1f, CAT5.LV20.55, CAT5.LV20.56, IT.LV16.CP, S9.TSK2.GM, S10.TSK2.GM, TV.LV20.13, TV.LV20.14

2. **ANS:** A **DIF:** L2 **REF:** 1-6 The Coordinate Plane
 OBJ: 1-6.2 Finding the Midpoint of a Segment
 STO: IN G.1.1
 KEY: coordinate plane, Midpoint Formula

3. **ANS:** A **DIF:** L2 **REF:** 1-7 Perimeter, Circumference, and Area
 OBJ: 1-7.2 Finding Area
 STO: IN G.2.5, IN G.3.3, IN G.6.7
 TOP: 1-7 Example 6
 KEY: circle, square, area

4. **ANS:** B **DIF:** L1 **REF:** 2-2 Biconditionals and Definitions
 OBJ: 2-2.1 Writing Biconditionals
 STO: IN G.8.4, IN G.8.6, IN G.8.7
 TOP: 2-2 Example 1
 KEY: conditional statement, biconditional statement
 MSC: NAEP G1c, NAEP G5a, CAT5.LV20.54, IT.LV16.CP, IT.LV16.PS, S9.TSK2.PRA, S10.TSK2.PRA, TV.LV20.17, TV.LV20.18

5. **ANS:** B **DIF:** L2 **REF:** 2-5 Proving Angles Congruent
 OBJ: 2-5.1 Identifying Angle Pairs
 STO: IN G.8.8, IN G.8.7
 KEY: supplementary angles

6. **ANS:** D **DIF:** L1 **REF:** 4-1 Congruent Figures
 OBJ: 4-1.1 Congruent Figures
 STO: IN G.2.3, IN G.8.8, IN G.4.6
 TOP: 4-1 Example 1
 KEY: congruent figures, corresponding parts

7. **ANS:** A **DIF:** L1 **REF:** 4-5 Isosceles and Equilateral Triangles
 OBJ: 4-5.1 The Isosceles Triangle Theorems
 STO: IN G.4.1, IN G.8.8
 TOP: 4-5 Example 3
 KEY: isosceles triangle, Converse of Isosceles Triangle Theorem, Triangle Angle-Sum Theorem

8. **ANS:** C **DIF:** L1 **REF:** 5-1 Midsegments of Triangles
 OBJ: 5-1.1 Using Properties of Midsegments
 STO: IN G.4.5, IN G.4.9
TOP: 5-1 Example 1 KEY: midsegment, Triangle Midsegment Theorem

9. ANS: D DIF: L1
REF: 5-4 Inverses, Contrapositives, and Indirect Reasoning
OBJ: 5-4.1 Writing the Negation, Inverse, and Contrapositive STO: IN G.8.5, IN G.8.8
TOP: 5-4 Example 2 KEY: contrapositive

10. ANS: C DIF: L1
REF: 7-4 Areas of Trapezoids, Rhombuses, and Kites
OBJ: 7-4.1 Area of a Trapezoid STO: IN G.2.5, IN G.3.3
TOP: 7-4 Example 3 KEY: trapezoid, area

11. ANS: A DIF: L1
REF: 7-4 Areas of Trapezoids, Rhombuses, and Kites
OBJ: 7-4.2 Finding Areas of Rhombuses and Kites STO: IN G.2.5, IN G.3.3
TOP: 7-4 Example 3 KEY: area, kite

12. ANS: C DIF: L1 REF: 7-6 Circles and Arcs
OBJ: 7-6.1 Central Angles and Arcs STO: IN G.6.2, IN G.6.5, IN G.6.6, IN G.6.7
TOP: 7-6 Example 3 KEY: major arc, measure of an arc, arc

13. ANS: A DIF: L2 REF: 8-1 Ratios and Proportions
OBJ: 8-1.1 Using Ratios and Proportions TOP: 8-1 Example 4
KEY: proportion, Cross-Product Property, scale, word problem

14. ANS: A DIF: L1 REF: 8-3 Proving Triangles Similar
OBJ: 8-3.2 Applying AA, SAS, and SSS Similarity STO: IN G.2.3, IN G.4.4, IN G.4.6, IN G.8.8 TOP: 8-3 Example 4
KEY: Angle-Angle Similarity Postulate, word problem

15. ANS: A DIF: L1 REF: 8-6 Perimeters and Areas of Similar Figures
OBJ: 8-6.1 Finding Perimeters and Areas of Similar Figures STO: IN G.2.3, IN G.2.5, IN G.3.2, IN G.4.4 TOP: 8-6 Example 2
KEY: similar figures, area, trapezoid
16. ANS: C DIF: L1 REF: 9-1 The Tangent Ratio
OBJ: 9-1.1 Using Tangents in Triangles STO: IN G.5.4, IN G.5.6
TOP: 9-1 Example 2 KEY: side length using tangent, tangent, tangent ratio
MSC: NAEP M1m, CAT5.LV20.45, CAT5.LV20.46, CAT5.LV20.50, CAT5.LV20.55,
S10.TSK2.GM, S10.TSK2.PRA, TV.LV20.13, TV.LV20.14, TV.LV20.16,
TV.LV20.47

17. ANS: A DIF: L1 REF: 9-2 Sine and Cosine Ratios
OBJ: 9-2.1 Using Sine and Cosine in Triangles STO: IN G.5.4, IN G.5.6
TOP: 9-2 Example 2 KEY: sine, side length using sine and cosine, cosine ratio
MSC: NAEP M1m, CAT5.LV20.45, CAT5.LV20.46, CAT5.LV20.50, CAT5.LV20.55,
TV.LV20.47

18. ANS: C DIF: L1 REF: 9-2 Sine and Cosine Ratios
OBJ: 9-2.1 Using Sine and Cosine in Triangles STO: IN G.5.4, IN G.5.6
TOP: 9-2 Example 2 KEY: sine, side length using sine and cosine, sine ratio
MSC: NAEP M1m, CAT5.LV20.45, CAT5.LV20.46, CAT5.LV20.50, CAT5.LV20.55,
TV.LV20.47

19. ANS: A DIF: L1 REF: 9-5 Trigonometry and Area
OBJ: 9-5.2 Finding the Area of a Triangle TOP: 9-5 Example 3
KEY: area of a triangle, area, sine
MSC: NAEP M1h, CAT5.LV20.50, CAT5.LV20.55, CAT5.LV20.56, IT.LV16.AM,
TV.LV20.14, TV.LV20.16

20. ANS: C DIF: L1 REF: 10-1 Space Figures and Nets
OBJ: 10-1.1 Identifying Nets of Space Figures STO: IN G.7.1, IN G.7.2, IN G.7.3
TOP: 10-1 Example 3 KEY: polyhedron, face, vertices, edge, Euler's Formula
TV.LV20.17

21. ANS: B DIF: L1 REF: 10-6 Volumes of Pyramids and Cones
OBJ: 10-6.1 Finding Volume of a Pyramid STO: IN G.7.7
TOP: 10-6 Example 1 KEY: volume of a pyramid, pyramid, volume formulas, volume
MSC: NAEP M1j, CAT5.LV20.46, CAT5.LV20.50, CAT5.LV20.55, CAT5.LV20.56,
TV.LV20.52

22. ANS: B DIF: L1 REF: 10-8 Areas and Volumes of Similar Solids
OBJ: 10-8.1 Finding Relationships in Area and Volume STO: IN G.7.6, IN G.7.7
TOP: 10-8 Example 2 KEY: similarity ratio, volumes of similar solids

23. ANS: A DIF: L1 REF: 11-1 Tangent Lines
OBJ: 11-1.2 Using Multiple Tangents STO: IN G.6.2, IN G.6.3, IN G.6.5, IN G.8.8
TOP: 11-1 Example 5 KEY: properties of tangents, tangent to a circle, triangle

24. ANS: A DIF: L2 REF: 11-4 Angle Measures and Segment Lengths
OBJ: 11-4.2 Finding Segment Lengths STO: IN G.6.2, IN G.6.3, IN G.6.5, IN G.8.8
KEY: circle, chord, intersection inside the circle, intersection outside the circle, secant, tangent to a circle

25. ANS: A DIF: L1 REF: 11-4 Angle Measures and Segment Lengths
OBJ: 11-4.2 Finding Segment Lengths STO: IN G.6.2, IN G.6.3, IN G.6.5, IN G.8.8
TOP: 11-4 Example 3 KEY: circle, intersection outside the circle, secant, tangent, diameter

SHORT ANSWER

26. ANS:

\[x = 10, \; m\angle LMN = 114 \]

DIF: L1 REF: 1-5 Basic Constructions
OBJ: 1-5.2 Constructing Bisectors STO: IN G.1.2, IN G.4.2, IN G.8.9
TOP: 1-5 Example 4 KEY: angle bisector

27. ANS:

\[829.4 \; m \]

DIF: L1 REF: 10-6 Volumes of Pyramids and Cones
OBJ: 10-6.2 Finding Volume of a Cone STO: IN G.7.7 TOP: 10-6 Example 4
KEY: volume of a cone, volume formulas, volume, cone
28. **ANS:**

\[181 \text{ cm}^2; 206 \text{ cm}^2 \]

DIF: L2
REF: 10-3 Surface Areas of Prisms and Cylinders
OBJ: 10-3.1 Finding Surface Area of a Prism
TOP: 10-3 Example 2
KEY: surface area of a prism, lateral area, prism, surface area formulas, surface area, word problem

29. **ANS:**

\[a = \frac{9}{2}, \quad b = \frac{15}{2} \]

DIF: L2
REF: 8-4 Similarity in Right Triangles
OBJ: 8-4.1 Using Similarity in Right Triangles
STO: IN G.2.3, IN G.4.4, IN G.4.6, IN G.4.7, IN G.5.2, IN G.8.8
TOP: 8-4 Example 2
KEY: corollaries of the geometric mean, proportion

30. **ANS:**

\[8 : 7 \text{ and } 64 : 49 \]

DIF: L1
REF: 8-6 Perimeters and Areas of Similar Figures
OBJ: 8-6.1 Finding Perimeters and Areas of Similar Figures
STO: IN G.2.3, IN G.2.5, IN G.3.2, IN G.4.4
TOP: 8-6 Example 1
KEY: perimeter, area, similar figures

31. **ANS:**

\[x = 24.0, \quad y = 46.4 \]

DIF: L2
REF: 7-3 Special Right Triangles
OBJ: 7-3.2 Using 30°-60°-90° Triangles
STO: IN G.4.7, IN G.5.3, IN G.5.6
TOP: 7-3 Example 5
KEY: special right triangles, leg, hypotenuse

32. **ANS:**

\[-19\]
33. ANS: 60

34. ANS:
\[x = 77, \quad y = 57 \]

35. ANS:
\[1188 \text{ in.}^2 \]